High dimensional mean–variance optimization through factor analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional mean-variance optimization through factor analysis

A factor analysis-based approach for estimating high dimensional covariancematrix is proposed and is applied to solve themean–variance portfolio optimization problem in finance. The consistency of the proposed estimator is established by imposing a factor model structure with a relative weak assumption on the relationship between the dimension and the sample size. Numerical results indicate tha...

متن کامل

Optimization of High-Dimensional Functions through Hypercube Evaluation

A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space p...

متن کامل

Decentralized High-Dimensional Bayesian Optimization with Factor Graphs

This paper presents a novel decentralized high-dimensional Bayesian optimization (DEC-HBO) algorithm that, in contrast to existing HBO algorithms, can exploit the interdependent effects of various input components on the output of the unknown objective function f for boosting the BO performance and still preserve scalability in the number of input dimensions without requiring prior knowledge or...

متن کامل

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Neural network nonlinear factor analysis of high dimensional binary signals

Possible application of a new neural network suitable for binary factorization of signals of large dimension and complexity is introduced. We developed the new recall procedure of Hoppfield-like associative memory which allows search all attractors corresponding to factors (a true attrac-tor). Necessary separation of spurious attractors is based on calculation of their Lyapunov function. Being ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2015

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2014.09.006